
1

Procedural Terrain
Final project for class CS6491 Computer Graphics

Sebastian Weiss
November 30, 2015

I. OBJECTIVE

Terrain is a topic of endless discussion in computer graphics.
It has to cover a large area of the world and at the same time it
has to provide enough details for close-up shots. It is extremely
time consuming to create a large terrain that is also interesting
when viewed closely.

In this project we present a framework for generating
terrain, from a coarse grained height map to vegetation gen-
eration. The focus lies on combining existing techniques for
performing the different tasks. The result should be an island
because it provides a natural border of the world.

Applications of procedural terrain include computer games,
movies and geographic visualization and simulation. The
project was heavily inspired by a talk about "The Good
Dinosaur" from Pixar Animation Studios.

II. RELATED WORK

A lot of work has been done already in the field of
generating height maps. There are in general three differ-
ent approaches to this problem. Generating the height map
completely from scratch using perlin noise, fractals, voronoi
regions, software agents or genetic algorithms are described
in [1], [2] and [3]. These models often lack realism because
of the missing physically and geographic background. This
is addressed in a second approach, hydraulic erosion models,
as described in [4] and [5]. They start with existing height
maps and increase the realism by simulating fluid to erode the
terrain and forming rivers in the end. The other way is used
in [6], here we start with a river network and build the terrain
with respect to the river flow. The last approach copes with
the lack of control in the previous described methods. They
define the terrain by control features provided by the user, see
[7] and [8]. On a 2D-scope, [9] should be mentioned because
it describes a complete new approach not using height map
grids, but voronoi regions as base primitives.

After the terrain is created, it must be populated with
vegetation. Rendering of grass is described in e.g. [10] and
[11]. Trees must be generated first and for that, [12] and [13]
should be mentioned.

III. OVERVIEW

The framework consists of the following steps that are
executed one after another:

1) generating an initial map using voronoi regions, chapter
IV

2) editing the terrain by user-defined features, chapter V
3) simulating water and erosion to increase the realism,

chapter VI
4) define biomes and populate the scene with grass and

trees, chapter VII
For consistency, all examples in this paper show the same
terrain in the various stages of development.

IV. POLYGONAL MAP

As a first step, we have to come up with a good initial terrain
to help the user with the terrain features. These techniques are
taken from [9].

A. Voronoi Regions

We could start with a regular grid of squares or hexagons,
but using a Voronoi diagram provides more randomness.

At the beginning, we generate random points, called center
points, in the plane from -1 to 1 in x and y coordinate
and compute the Voronoi diagram (Fig. 1a). The Voronoi
diagram assigns each center point a region on the plane
to where this center point is the closest. These regions are
always convex polygons. The dual problem, the Delaunay
triangulation, connects two center points by an edge if and
only if the two voronoi regions of the two center points have
a common border.

Because the shapes of the polygons are too irregular, we
perform a relaxation step by replacing each center point by
the average of the polygon corners (Fig. 1b). Applying this
step several times results in more and more uniform polygons.
In practice, two or three iterations provide good results.

B. Graph representation

For further processing of the polygons, we have to build a
graph representation (Fig. 1c). The graph datastructure consists
of the following three classes:

c l a s s C e n t e r {
i n t i n d e x ;
V e c t o r 2 f l o c a t i o n ;
boolean w a t e r ;
boolean ocean ;
boolean b o r d e r ;
Biome biome ;
f l o a t e l e v a t i o n ;



2

(a) initial region (b) relaxation (c) graph representation

Figure 1: Initial polygon map

f l o a t m o i s t u r e ;
f l o a t t e m p e r a t u r e ;
L i s t < Cente r > n e i g h b o r s ;
L i s t <Edge > b o r d e r s ;
L i s t <Corner > c o r n e r s ;

}

c l a s s Edge {
i n t i n d e x ;
C e n t e r d0 , d1 ; / / Delaunay
Corner v0 , v1 ; / / Voronoi
V e c t o r 2 f m i d p o i n t ;
i n t r i ve rVo lume ;

}

c l a s s Corner {
i n t i n d e x ;
V e c t o r 2 f p o i n t ;
boolean ocean ;
boolean w a t e r ;
boolean c o a s t ;
boolean b o r d e r ;
f l o a t e l e v a t i o n ;
f l o a t m o i s t u r e ;
f l o a t t e m p e r a t u r e ;
i n t r i v e r ;
L i s t < Cente r > t o u c h e s ;
L i s t <Edge > i n c i d e n t ;
L i s t <Corner > a d j a c e n t ;

}

The class Center stores the center of a voronoi region, and the
vertices of the voronoi polygons are represented by Corner.
Because of the duality between the Voronoi Diagram and
Delaunay triangulations, an edge connects both two corners
(as an edge of a voronoi polygon) and two centers (as an
edge in the delaunay triangulations). The other properties of
the three classes are needed in the next step.

C. Island shape

As a next step, we have to define the general shape of the
island. A simple way to get the desired shape is to combine
perlin noise1 with a distance from the center. Let (x, y) be a
point and we want to know if it is in the water or not.

noise :=

n∑
i=0

noise(x ob o
i
s, y ob o

i
s) ab a

−i
s (1)

water(x, y) := noise < offset+ scale (x2, y2) (2)

The function water(x, y) returns true iff the point (x, y) is
in the water. The function noise(x,y) returns the value of the
perlin noise at the specified position.

There are many values to tweak: n defines the number of
octaves that are summed together, ob specifies the base octave,
os the octave scale, ab the base amplitude and as the amplitude
scale. scale defines the influence of the distance to the center
of the map versus the perlin noise and offset specifies the
base island size. In our experiments, we use the following
values: n = 4, ob = 6, os = 2, ab = 0.5, as = 2.5, scale =
2.2, offset = −0.2.

This function is evaluated for every corner (stored in the
water-property). A center is labeled as water if at least 30%
of the corners are water. The result can be seen in Fig. 2a

To distinguish between oceans and lakes, we use a flood
fill from the border of the map and mark every water polygon
on the way as ’ocean’ until we reach the coast. Corners are
marked as ’coast’ if they touch centers that are ocean and land.

D. Elevation

After creating the initial island shape, we assign elevation
values to every corner and center (Fig. 2b). For that we start
from every coast corner and traverse the graph using breath-
first along the corners. When traversing over land, we increase
the elevation and over the sea we decrease the elevation. By
that we obtain mountains and a continental shelf. Only when
walking along or over lakes, we do not increase the elevation.
This leads to flat areas that are later filled with water.

1http://mrl.nyu.edu/ perlin/doc/oscar.html



3

(a) initial shape (b) elevation (c) temperature

(d) moisture (e) biomes (f) generated heightmap

Figure 2: Elevation and Moisture

From the elevation, we directly derive the temperature: The
higher it is, the colder it is. (Fig. 2c).

Until now, the elevation and temperature were defined for
corners. To get these values for centers as well, we simply
average them.

E. Moisture
To obtain moisture values, we start with creating rivers.
First we select random corners that are not coast or water

and from there we follow the path of the steepest descent
until reaching the ocean. At each step, we increase the amount
of water the river carries. We then initial the moisture value
of the river corners with the water amount. To achieve more
distributed rivers, you might start a new river only at corners
that are at least one or two steps away from an existing river.

Second we perform a breath-first-search starting from river
corners. At each step, we decrease the moisture by a multi-
plicative factor of e.g. 0.8 (works well in our experiments). By
that, the rivers spread their moisture over the land depending
on the amount of water they carry.

Third we average again the moisture of each corner to obtain
the moisture per center. The result can be seen in 2d.

As a last step, we assign a biome to each center based on
its temperature and moisture (Fig. 2e). This acts as a starting
point for chapter VII. More details on the biomes are described
in section VII-A.

F. Generating the height map

1) Heightmap: The next steps in the processing pipeline all
require a height map. A height map is just a rectangular grid of
values where each cell stores the height at this point. We also
use the same datastructure to store moisture and temperature
values.

Notation: Let H be the heightmap. Then we identified the
cell at position i, j with either Hi,j or H[i, j], depending
on the readability. When coordinates lie outside the map,
we clamp them. When the coordinates are not integers, but
lie between cells, we perform a bilinear interpolation be-
tween the neighboring cells. When two heightmaps, or in
the general case two scalar- or vectorfields, are added or
multiplied together in this paper, these are always element-
wise operations.

2) Base elevation: Since we already display the polygon
graph from the previous steps using triangle meshes, we can
just render the elevation mesh from step IV-D to obtain a base
elevation of the generated terrain.

However, the straight corners of the polygonal cells are
still visible. Therefore we have to distort the height map by
replacing each height with the height of the cell an offset
away. The offset is defined by a perlin noise. For more
details on this, see chapter "Combination and perturbation"
in [2]. The increase the height difference between flatlands



4

and mountains, we apply the following scaling to the height
values:

h← sign(h) · |h|1.5 (3)

3) Adding noise: The terrain still looks very boring, we
need more noise to create hills and mountains. Therefore we
add a multi fractal noise to the heightmap. The equation is
taken from Chapter 4.3 of [8].

N(x, y) := A(x, y)

n∑
k=0

noise(rkx, rky)

rk(1−R(x,y)
(4)

noise is again the perlin noise function, r is the octave factor
(here r = 2) and n is the number of octaves (we use n = 5).
The scalarfield A defines the amplitude of the noise at the
given terrain position and R the roughness (how the octaves
are mixed together). In our experience we compute A and R
based on the biomes using the values from table I. The noise

Biome A R
Snow 0.5 0.7
Tundra 0.5 0.5
Bare 0.4 0.4
Scorched 0.7 0.3
Taiga 0.4 0.3
Shrubland 0.5 0.2
Temperate desert 0.1 0.1
Temperate rain forest 0.3 0.2
Deciduous forest 0.3 0.4
Grassland 0.4 0.5
Tropical rain forest 0.3 0.2
Tropical seasonal forest 0.3 0.2
Subtropical desert 0.3 0.6
Beach 0.3 0.5
Lake 0.2 0.2
Ocean 0.2 0.1

Table I: Noise properties

value N is then simply added to the final height map. At the
end, we normalize the map so that a height of zero is the
ocean level, 1 is the highest mountain and -1 is the deepest
sea.

The result can be seen in Fig. 2f. (The seed used is
658175619cff )

G. User interaction

In our implementation, the user can modify the elevation,
temperature and moisture values starting from the presented
initial values. By that, the user can create custom island shapes,
raise mountains, build valleys and define the biomes by editing
the temperature and moisture values.

With the terrain created in this step, we can proceed to the
next step.

V. TERRAIN FEATURES

Starting from the terrain from the previous chapter, the user
now has the ability to fine-tune the terrain features. This is an
implementation of [8] with some extensions. More examples
and further explanations are available in this paper.

A. Feature curves

In the center of this processing step stand feature curves.
Feature curves are added by the user and a solver (V-B) then
modifies the terrain with respect to them. Example feature
curves forming hills can be seen in Fig. 3a (white spheres are
the control points and the blue tupe is the interpolated curve)
and the resulting terrain in Fig. 3b.

Each feature curve consists of two or more control points.
Each control point has the following properties:
• a position (x, y, z) in the world
• a boolean if it constraints elevation
• a float plateau, specifying the size of the flat plateau on

top of the curve
• four floats sl, ϕl, sr, ϕr specifying the size and angle of

the slopes left and right of the curve
In the example in Fig. 3, the slope sizes are zero, so no slope
constraints are applied.

Between the control points, the position is interpolated using
cubic hermit splines and quadratic hermit splines at the start
and end point (I use the code from the CurveAverage project).
The other constraining values are linearly interpolated.

B. Diffusion solver

The task of the diffusion solver is to modify the terrain so
that it remains smooth while preserving the feature constraints.
The diffusion solver iteratively updates the terrain using the
following recursion: Let Hi be the height map at the i-th
iteration.

Hk+1[i, j] = α[i, j]E[i, j]
+ β[i, j]Gk+1[i, j]
+ (1− α[i, j]− β[i, j])Lk+1[i, j]

(5)

E is the forced elevation at the given point, it is directly
created from the elevation constraints of the feature curves.
G describes the gradient or the slope and L is a Laplace
smoothing term. The values α and β, with 0 ≤ α ≤ 1, 0 ≤
β ≤ 1, α + β ≤ 1, specify the weighting of the single
term. On the plateaus of the feature curves we set α = 0.9
and β = 0. This forces the elevation to match the desired
height while adding a little bit of smoothing to it. During
slopes of the feature curve, we use α = 0 and β = 0.5. By
that, both the slope constraints and smoothing constraints are
satisfied. Outside of the influence of the feature curves, we set
α = 0, β = 0.

The gradient term is defined in the following way:

Gk+1[i, j] = Nk[i, j] +G[i, j] (6)

Nk[i, j] = n2
xH

k[i−sign(nx), j]+n2
yH

k[i, j−sign(ny)] (7)

The gradient equation tends to satisfy the provided gradient
G. G is directly calculated from sin(ϕl) and sin(ϕr), i.e. from
the slope angles defined at the control points. The vector n =
(nx,ny) describes the normalized direction of the gradient.
This vector is orthogonal to the feature curve when projected
in the plane and point away from the curve. In Fig. 4b, some of
them are displayed as gray lines going away from the plateau.



5

(a) feature curves (b) resulting terrain

Figure 3: Defining feature curves

The Laplace term smoothes the terrain by averaging the
neighbor cells:

Lk+1[i, j] = 1
4 (Hk[i− 1, j] +Hk[i+ 1, j]
+Hk[i, j − 1] +Hk[i, j + 1])

(8)

C. Integration into existing terrain

Defining the whole terrain only with the feature curves
is very tedious. Therefore we want to start with an existing
terrain, as described in chapter IV. However, simply starting
with the existing terrain as H0 does not work because the
Laplace term would just smooth out every feature apart from
the feature curves.

[7] proposes a different solution. They compute the eleva-
tion and gradient constraints relative to the original terrain,
then solve the diffusion equation on a flat map and add them
together. The idea is visualized in the following image:

This works as long as there are no sharp features already
existing right next to the new feature curve. If that is the case,
as in the image above, adding the curves together produces
unwanted results because of these inferences.

This case happens quite often as seen in Fig. 5. Here we
define a new feature curve right next to an existing mountain.
Although the curve’s slope does not touch the existing terrain,
the smoothing term inside the diffusion solver also increases
the height outside of the feature curve. This leads to a growth
of the mountain on the left (the tip of the mountain is now
much higher than the control point, before it was about the
same height). From a designer’s perspective, this behavior
might not be desired because it is hard to predict and control.

D. Extension of the solver

We propose now another solution that both keeps existing
terrain features while it preserves the local control and removes
the inferences mentioned before. The idea is to limit the
smoothing term L to influence only a customizable region
around a feature curve. For this, we add two new parameters,
ll and lr, to each control point. They specify the local radius
of an envelope around the plateau and slope of the feature
curve.

We then set γ to 1 inside this envelope and to 0 outside and
modify equation 5 to include γ:

Hk+1[i, j] = α[i, j]E[i, j]
+ β[i, j]Gk+1[i, j]
+ γ[i, j](1− α[i, j]− β[i, j])Lk+1[i, j]

(9)

Because we no limit the smoothing area, we can apply the
solver directly on the original height map without smoothing
out existing features. There is no need any more to solve the
diffusion equation on a separate map with relative heights as
done in the previous section.

In Fig. 5c you see the problematic situation again, but this
time, the smoothing region is bounded as described before.
The border of the smoothing envelope is visualized by the
black lines. Note that the old mountain is preserved and the
new feature is blended into the terrain without discontinuities.

VI. HYDRAULIC EROSION

Now the shape of the terrain is fully defined, and the next
step is to increase the realism by performing erosion.

Erosion comes in many shapes in the nature: there is thermal
erosion which decomposes larger stones into smaller ones,
wind erosion which carries sand over long distances and finally
water erosion. Water erosion or hydraulic erosion is caused by
flowing water that erodes the terrain, transports sediment along
the river and finally deposits it somewhere. Since the hydraulic
erosion is the strongest one, we focus on this type of erosion
in the presented framework.

We use an adapted version of the model presented in [5].

A. Erosion Model

The algorithms follows the following steps, which are
repeatedly executed using the timestep ∆t (e.g. ∆t = 0.01):



6

(a) original terrain (b) adding feature curves (c) resulting terrain

Figure 4: Adding features to existing terrain

(a) original terrain with new feature curve (b) inference, left mountain is modified (c) limiting smoothing to remove inference

Figure 5: Inferences between new feature curves and existing terrain features

1) water increment by rainfall
2) flow simulation
3) water volume change
4) erosion, deposition and sediment transportation
5) evaporation

In the next sections, we use the following notation for de-
scribing the involved variables, all of them are scalarfields or
vectorfields on the grid of the terrain:
• terrain height b
• water height d
• suspended sediment s
• outflow flux f = (fL, fR, fT , fB)
• water velocity v = (u, v)

1) Water increment: Rainfall is simulated by sampling
water drops over the terrain. The probability of each cell to
’emit’ a water drop is equal to the moisture. The moisture
map is initialized with the information created at the very
beginning, in chapter IV-E. The user can edit this moisture
value before starting the simulation. By using random rain
drops instead of a global water increment, we add more
randomness to the scene. A single raindrop erodes the terrain

a little bit, forming a tiny river bed. Next drops that are created
nearby are now more likely to follow this path as well. This
then leads to formation of river beds instead of just removing
sediment from slopes uniformly.

In addition, the user can place river sources on the terrain.
They act as a constant source of water.

Let rt[x, y] be the water that arrives at the current time step
at position (x, y). Then the water height is modified in the
following way:

dt[x, y] = dt[x, y] + ∆t · rt[x, y] (10)

2) Flow simulation: In the flow simulation, we simulate
the way water flows from higher positions to lower positions.
We approximate this by using virtual pipes that connect two
adjacent cells in the grid. The amount of water that flows from
one cell to the other is called the outflow flux.

The outflow flux from the current cell to the neighbor cell
to the left is computed as follows:

fLt+∆t[x, y] = max(0, fLt [x, y] + ∆t · g ·∆hLt [x, y] (11)

Whereby the height difference to the left cell is calculated
using:

∆hLt [x, y] = bt[x, y]+dt[x, y]−bt[x−1, y]−dt[x−1, y] (12)

fR, fT and fB are calculated in the same way. The gravitation
constant g specifies the amount of acceleration of the flow by
the height difference. In our experiments, we set g = 10.

It can now happen that after subtracting the sum of the
outflow flux from the water height (see VI-A3), the water
height becomes negative. To avoid this, all four outflow



7

flux values are scaled with the following scaling factor K
(evaluated cell-wise).

K = min(1,
d

(fL + fR + fT + fB) ·∆t
) (13)

3) Water volume change: After computing the outflow flux,
we can define the change of the water volume as:

∆V [x, y] = ∆t · (
∑
fin −

∑
fout)

= ∆t · (fLt+∆t[x+ 1, y] + fRt+∆t[x− 1, y]
fBt+∆t[x, y + 1] + fTt+∆t[x, y − 1]
−
∑

i∈{L,R,T,B} f
i
t+∆t[x, y])

(14)
The water height per cell is then modified using:

dt+∆t[x, y] = dt[x, y] + ∆V [x, y] (15)

For the next step, VI-A4, we need to compute the horizontal
velocity of the water v = (u, v). Let d̄ be the arithmetic
average of the water height before and after equation 15. Then
the velocity along the x-axis is computed as:

u =
fR[x− 1, y]− fL[x, y] + fR[x, y]− fL[x+ 1, y]

2d̄
(16)

v, the velocity along the y-axis is computed similarly.
4) Erosion, deposition and sediment transportation: To

compute the sediment erosion and deposition, we first define
the slope at a cell as:

α[x, y] = max( |b[x, y]− b[x− 1, y]|,
|b[x, y]− b[x+ 1, y]|,
|b[x, y]− b[x, y − 1]|,
|b[x, y]− b[x, y + 1]| )

(17)

Then the sediment transportation capacity C is calculated as:

C[x, y] = Kc · α[x, y] · |v[x, y]| (18)

In our experiments, we set the sediment capacity constant Kc

to 0.1. We recommend to clamp the values of α to be between
e.g. 0.005 and 0.5 before computing C. By this, the erosion
on steep areas does not grow to infinity and on flat areas some
erosion still takes place.

Then we compare C to the suspended sediment st. For C >
st, sediment is eroded using:

bt+∆t = bt −Ks(C − st)
s′ = st +Ks(C − st)

(19)

And for C < st, sediment is dissolved:

bt+∆t = bt +Kd(st − C)
s′ = st −Kd(st − C)

(20)

Ks and Kd are erosion and deposition constants. In our
experiments, we use Ks = Kd = 0.002.

After sediment is eroded, we have to transport it to next cells
using the water velocity. For that purpose, we use a backward
Euler-step:

st+∆t = s′[x− u ·∆t, y − v ·∆t] (21)

5) Evaporation: As a last step, some water is evaporated
in the air every step. We model this simply as

dt+∆t[x, y] = dt+∆t[x, y] · (1−Ke ·∆t) (22)

With Ke being an evaporation constant, e.g. Ke = 0.1.

B. Adaptions

We made a few changes to the original model that in our
opinion increase the realism and visual appearance.

1) non-uniform temperature: The original model assumes
a uniform temperature over the whole scene. Since we want to
model both hot deserts and cold snow areas, we cannot apply
this in our situation. We give the user the ability to edit a
temperature map T (from 0=cold to 1=hot) that is initialized
with the temperature from IV-D. We then modify equation 22
to

dt+∆t[x, y] = dt+∆t[x, y] · (1−Ke ·∆t · T [x, y]) (23)

2) non-uniform erosion and deposition constants: In VI-A4
we assumed the erosion constant Ks and the deposition
constant Kd to be constant. However, in a natural soil, this
is not the case.

2

The top layers (soil) are eroded more easily than the bottom
layers (stone). Newly dissolved sediment is eroded even better
again because it consists mostly of loose stones and sand. We
model this by representing Ks and Kd as functions of the
amount of eroded terrain ∆b.

∆bt[x, y] = boriginal[x, y]− bt[x, y]
Ks(∆b) = Ks,base · 2−∆b/fs

Kd(∆b) = Kd,base · 2∆b/fd

(24)

Ks,base and Kd,base are set to 0.002 as before; fs and fd
specifies the amount of terrain that has to be eroded/deposited
before the speed of the erosion/deposition is halved.

For total accuracy, you would have to integrate these func-
tions over the whole erosion/deposition process. For simplicity,
we just evaluate them once and assume them to be constant
for one time step.

2https://upload.wikimedia.org/wikipedia/commons/9/95/Soil_profile.png



8

(a) original terrain with river source (b) river bed is carved out

Figure 6: Erosion and deposition of river beds

(a) original terrain (b) running the erosion simulation

(c) changes in the height map (d) final terrain

Figure 7: Erosion and deposition of mountains



9

In addition, we limit the total amount of eroded or deposited
terrain per cell. This is needed because when the simulation
is running for a longer time, very steep cliffs are carved out
of regions with a steep slope. A bound on the change of the
terrain provides visually more pleasant results.

3) Boundary conditions: Since we assume that our terrain
forms an island, we have to treat the case when water reaches
the ocean in a special way. In the case of a cell that is below
the see level, we simply set the water height, outflow flux and
velocity to zero and add the whole sediment amount to the
terrain height.

C. Limitations

The described model is very sensitive to the chose of the
parameters. The timescale must be small enough so that no
numerically instabilities are created, but this directly leads to a
long computation time. Also the constant values in the erosion
model are very crucial: if the factors are too high, the terrain is
eroded very quickly. This looks very unrealistic. The presented
values produce good results in our experiments, but a deeper
analysis of the parameters is necessary in a future work.

D. Results

In Fig. 6, you can see how the erosion simulation carves
out a river bed from a specified river source.

Fig. 7 shows the simulation on a larger scale. The original
terrain is shown in 7a, then in 7b, the simulation is running.
The displayed terrain height is the terrain height plus the water
height, so lakes, waves and so on can be seen. The water height
also specifies how much "blue" is drawn on top of the terrain.
The terrain is textured with grass until a specific slope angle
is reached, then stone is used (with blending between them).
By that, you can get a feeling of the local slope angle. In 7c,
you can see the difference from the original terrain to the new
terrain. White indicates depositions, black stands for erosion.
Finally, 7d shows the final terrain without water. Especially
note the change in the coast line and that the terrain is much
more "bumpy", the stone texture is used more often.

VII. VEGETATION

Terrain without vegetation looks a little bit boring. There-
fore, the last step of the framework is to define biomes and
add trees and grass based on them.

A. Biomes

Figure 8: Biomes

Biomes are a system to classify the nature. A biome
defines a region with common climate, soil and vegetation.
An attempt to classify the different biomes based on rainfall
and temperature was made in [14]. We are using an adapted
version of the classification from [2], see Fig. 8.

In our implementation, the biomes are initialized with the
temperature and moisture information from the previous steps.
The user can then paint the different biomes directly on the
terrain to fine-tune the biome assignment.

The terrain can be rendered using different textures for each
biome (Fig. 9). Furthermore, the biomes specify the existence
and types of grass and trees.

B. Grass

For rendering grass, we use the concepts presented in [10].
An implementation of it comes with the 3d engine we are
using, the jMonkeyEngine3. A blade of grass is displayed
using two transparent quads that are orthogonal to each other
(Fig. 10a). The shades are then randomly placed on the terrain,
the density distribution varies with the biomes. Finally, a
texture is applied to complete the grass rendering (Fig. 10b).

C. Trees

Generating trees is a little bit more complicated. Trees have
a very difficult 3d shape because they have many branches
and leaves. In most computer games, trees are rendered using
very primitive objects: stems are rendered as textured cylinders
and bunches of leaves and small branches are combined and
rendered using a single textured quad. This often looks good
when viewed from the distance but the illusion breaks when
you get to close to them.

1) Tree generation: Since we also want to generate the trees
procedurally, we have to go another way. In this framework,
we use the algorithm presented in [13], implemented in [15].
Trees are recursivly defined by a bunch of parameters for
each layer. The first layer is the stem, the last layer contains
the leaves. These parameters include curvature, branch radius,
splitting, branching and textures.

2) Level of Detail: The procedural tree generation algo-
rithm has one huge drawback: it generates too many triangles.
Since every leave is modeled as an individual quad and the
stem and branches are very smooth, a typical tree contains up
to one million vertices and half a million triangles. These are
way too many to render more than a few trees at the same
time.

Furthermore, because the tree model contains many small
details, aliasing effects become a problem when the tree is
rendered in the distance. The branches become so small that
they are only rendered sometimes by the rasterizer. This leads
to flickering effects.

Both problems are adressed with a very simple technique
based on impostors for rendering distant trees. impostors are
textured quads that are rotated around a central axis. We are
using eight quads for trees (Fig. 12). Note the similarity of the
impostors to the way grass is rendered. Each quad is textured

3http://jmonkeyengine.org/

http://jmonkeyengine.org/


10

(a) biomes are painted on the terrain (b) textured terrain based on the biomes

Figure 9: Assigning biomes to the terrain

(a) transparent quads forming the grass blades (b) adding a texture leads to the final appearance

Figure 10: Grass

(a) black tupelo in fall (b) black oak

Figure 11: Grass



11

Figure 12: Impostor

with how the tree would look like when seen from the angle
of that quad. To create these textures, we render the trees from
every of these eight view angles into a offscreen surface and
use this as the texture. During the creation of the textures, the
tree must be rendered with exactly the same light setting as in
the final scene. Otherwise, the lighting of the tree impostors
is not consistent with the lighting of the surrounding terrain.
This is especially necessary when a strong directional light is
used.

To avoid popping effects when changing from the high
resolution model for close-up shots to the impostors for
distance rendering, we use alpha blending:

Distance from the viewerV
is

ib
ili

ty
/

A
lp

ha

fade-near
fade-farhigh res

impostor

Figure 13: Blending between high resolution model and
impostor

The parameters fade-near and fade-far specify the distances
from the camera where the fading between the high resolution
model and the impostor takes place. Because the memory
of the graphics card is also limited, we only load the high
resolution model into the graphics memory when the distance
to the tree is smaller than the fade-far value.

Since the downscaling of textures can be done much
smoother by the graphics card, impostors do not lack the
problems of aliasing like the high resolution models do.

In Fig. 11 you can see two types of trees. The high
resolution tree is rendered on the left (see VII-C1) and the
low resolution version for distance rendering is drawn on the
right (see VII-C2).

3) Tree placement: As a last step, the trees must be placed
in the scene. For that, we first build a table by hand listing

which trees occur in which biome with what probability. Then
for every position on the height map (integer positions) we
place a tree with a probability based on the general density
of trees in the biome at that position and a constant density
factor. This density factor is a parameter that has to be adjusted
to match the desired global tree density. If a tree should be
placed, we sample the type of tree from the tree table built at
the beginning. To add more randomness, we place the tree at
a random point on the terrain within the area of the current
cell.

VIII. CONCLUSION AND FUTURE WORK

With the framework described in this paper, we are able
to produce realistic terrain with many possibilities for artistic
control. The user can control the shape of the island, can grow
mountains and other terrain features, and can define vegetation
based on biomes. To increase the realism of the terrain, we
apply a hyrdaulic erosion scheme to it.

There are many possibilities for extensions of this project.
A more sophisticated approach for the rendering of grass and
trees, as described in [11], could be used. We further only
support on type of grass that is planted on a fixed subset of
biomes. Especially in rain forests, many bushes, farns, flowers,
lianas and other plants apart from trees grow which are not
included in our simulation. Furthermore, the diffusion solver
(V) and erosion solver (VI) are implemented on the CPU. A
port to the GPU would increase the performance significantly.

The next two pages show some screenshots from the terrain
used as an example through this paper.

REFERENCES

[1] J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 2, pp. 111–119, 2010.

[2] Jacob Olsen, “Realtime procedural terrain generation,” 2004.
[3] Teong Joo Ong, Ryan Saunders, John Keyser, John J. Leggett, “Terrain

generation using genetic algorithms,” 2005.
[4] Bedrich Beneš, “Real-time erosion using shallow water simulation,”

2007.
[5] X. Mei, P. Decaudin, and B.-G. Hu, “Fast hydraulic erosion simulation

and visualization on gpu,” in 15th Pacific Conference on Computer
Graphics and Applications (PG’07), pp. 47–56.

[6] Jean-David Genevaux, Eric Galin, Eric Guerin, Adrien Peytavie, Bedrich
Benes, “Terrain generation using procedural models based on hydrol-
ogy,” 2013.

[7] Flora Ponjou Tasse, Arnaud Emilien, Marie-Paule Cani, Stefanie Hah-
mann, Adrien Bernhardt, “First person sketch-based terrain editing,”
2014.

[8] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin, “Feature
based terrain generation using diffusion equation,” Computer Graphics
Forum, vol. 29, no. 7, pp. 2179–2186, 2010.

[9] Amit Patel, “Polygonal map generation for games,”
2010. [Online]. Available: http://www-cs-students.stanford.edu/~amitp/
game-programming/polygon-map-generation/

[10] Kurt Pelzer, “Rendering countless blades of waving grass,” in GPU
Gems.

[11] K. Boulanger, “Real-time realistic rendering of nature scenes with
dynamic lighting,” 2005.

[12] Adam Runions, Brendan Lane, Przemyslaw Prusinkiewicz, “Modeling
trees with a space colonization algorithm,” 2007.

[13] J. Weber and J. Penn, “Creation and rendering of realistic trees,” in the
22nd annual conference, S. G. Mair and R. Cook, Eds., pp. 119–128.

[14] Marietta College, “Marietta college main biomes page.” [Online].
Available: http://w3.marietta.edu/~biol/biomes/biome_main.htm

[15] Wolfram Diestel, “Arbaro,” 2013. [Online]. Available: http://arbaro.
sourceforge.net/

http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://w3.marietta.edu/~biol/biomes/biome_main.htm
http://arbaro.sourceforge.net/
http://arbaro.sourceforge.net/


12

Figure 14: grassland

Figure 15: forest



13

Figure 16: deciduous forest (foreground), taiga (background)

Figure 17: desert


	Objective
	Related Work
	Overview
	Polygonal Map
	Voronoi Regions
	Graph representation
	Island shape
	Elevation
	Moisture
	Generating the height map
	Heightmap
	Base elevation
	Adding noise

	User interaction

	Terrain Features
	Feature curves
	Diffusion solver
	Integration into existing terrain
	Extension of the solver

	Hydraulic Erosion
	Erosion Model
	Water increment
	Flow simulation
	Water volume change
	Erosion, deposition and sediment transportation
	Evaporation

	Adaptions
	non-uniform temperature
	non-uniform erosion and deposition constants
	Boundary conditions

	Limitations
	Results

	Vegetation
	Biomes
	Grass
	Trees
	Tree generation
	Level of Detail
	Tree placement


	Conclusion and future work
	References

